SISTEM PENGAMAN PINTU GUDANG SENJATA RUDAL ARHANUD TNI AD DENGAN IDENTIFIKASI WAJAH

Authors

Keywords:

face recognition, independent component analysis, atmega16

Abstract

The door security system has been created for a long time to keep the security indoors, but along
with the development of technology there are several alternative security systems that are more
modern, fast, accurate and safe. Security is one of them is by using a facial recognition system that
can identify a person's identity with physiological characteristics. Face recognition has several
advantages because of its simplicity in identifying images and image data taken directly through
the camera in real time at a certain distance, then it will be stored in the data base then processed
compared with 1: M. The data process will be applied automatically to unlock the door of the
warehouse of missile weapons so that it can be utilized in Army Air Defense Artillery Unit
(Arhanud).

References

[1] Simson Canra, 2015. ‘Sistem
Pengenalan Wajah Pada Pengaman Pintu
Ruang Komandan Denarhanud Rudal 004
Menggunakan Android’. Skripsi Prodi
Teknik Elektro Fakultas Teknik Unmer
Malang.
[2] Dwi Ely Kurniawan, 2012. ‘Rancang
Bangun Sistem Pengenalan Wajah
Menggunakan Filter Gabor’. Tesis Program
Pascasarjana Undip Semarang.
[3] Wahyu Sulistiyo, 2014. “Rancang
Bangun Prototipe Aplikasi Pengenalan
Wajah untuk sistem absensi alternatif dengan
metode har like feature dan eigenface”.
Jurusan Teknik Elektro Unes.
[4] Eka Kusuma Wardhani, “Analisis &
Implementasi Sistem Pengenalan Wajah
Pada Video Di Ruangan Menggunakan
Metode Independent Component Analysis
(ICA) Dan Non-Negative Matrix
Factorization With Sparseness Constraints
(NMFSC)”. Jurusan Teknik Telekomunikasi
Universitas Telkom.
[5] Fatta, H.A, 2009. Rekayasa Sistem
Pengenalan Wajah, Andi Offset, Yogyakarta.
[6] Putra, Darma, 2010. ‘Pengolahan
Citra Digital’. Yogyakarta, Penerbit Andi.
[7] Prasetyo, E, 2011. Pengolahan Citra
Digital dan Aplikasinya dengan MATlAB,
Andi, Yogyakarta.
[8] Jolliffe, 2002. I.T. Principal
Component Analysis. Edisi kedua. SpringerVerlag.
New
York.

[9]

Johnson dan Wichern, 2007. Applied
Multivariate Statistical Analysis. Edisi
keenam. Pearson Prentice Hall.
[10] Anonim, ATmega16 Data sheet,
pdf1.All data sheet.com/data sheet–pdf/view/
78532/ ATMEL/Atmega.
[11] Kadir, Abdul, 2004. Pemrograman
Database dengan Delphi Menggunakan
Access & ADO. Yogyakarta: Andi.
[12] Malvino dan Albert Paul, 2003.
Prinsip2 Elektronika. Jakarta: Erlangga.
[13] Fraden, Jacob. Handbook Of Modern
Sensors, :Physics, Designs, And Applications
Third Edition, Springer.
[14] Petru, Frank D, ELEKTRONIK
INDUSTRI, Penerbit ANDI, Yogyakarta.
[15] Sistem pengenalan wajah (face
recognition) menggunakan Metode hidden
markov model (hmm) Teknik Elektro – UI -
Dr. Ir. Dodi Sudiana M.
[16] Face Detection using Independent
Component Analysis Aditya Rajgarhia CS
229 Final Project Report December 14, 2007
[17] Devisi Penelitian dan Pengembangan
MADCOMS, Dasar Teknis Instalasi Jaringan
Komputer, Penerbit ANDI, Yogyakarta,
2003.

Published

2017-09-01